# Circle constructions – part 2 student guide

## Geometric Constructions

Geometric constructions date back thousands of years to when Euclid, aGreek mathematician known as the “Father of Geometry,” wrote the book Elements. In Elements, Euclid formulated the five postulates that form the base for Euclidean geometry. To create all the figures and diagrams, Euclid used construction techniques extensively. A compass and straightedge are used to create constructions. A compass is used to draw circles or arcs and a straightedge is used to draw straight lines.

As you complete the task, keep these questions in mind:

How do you perform constructions related to circles?What theorems and explanations can be used to justify these constructions?

In this task, you will apply what you have learned in this lesson to answer these questions.

## Directions

Complete each of the following tasks, reading the directions carefully as you go. Be sure to show all work where indicated, including inserting images of constructions created using the tool. If you are unable to take and insert screenshots of the construction tool, print this activity sheet and create the constructions by hand using a compass and straightedge.

Your teacher will give you further directions about how to submit your work. You may be asked to upload the document, e-mail it to your teacher, or print it and hand in a hard copy.

Now, let’s get started!

## Step 1: Construct a circle through three points not on a line.

a) Points D, E, and F are not in a line. To construct a circle through points D, E, and F, begin by drawing line segments                     and   . Then construct the perpendicular bisectors of    and   , and name the point of intersection of the perpendicular bisectors O. How do you know that point O is the center of the circle that passes through the three points? (10 points)

## Step 2: Construct regular polygons inscribed in a circle.

a) While constructing an equilateral triangle or a regular hexagon inscribed in a circle, you may have noticed that several smaller equilateral triangles are formed, like rPQR shown in the figure below. Explain why rPQR is an equilateral triangle. (5 points)

b) The completed construction of a regular hexagon is shown below. Explain why rACF is a 30º-60º-90º triangle.(10 points)

c) If you are given a circle with center C, how do you locate the vertices of a square inscribed in circle C? (5 points)

## Step 3: Construct tangent lines to a circle.

a)  JL is a diameter of circle K. If tangents to circle K are constructed through points L and J, what relationship would exist between the two tangents? Explain. (5 points)

b) The construction of a tangent to a circle given a point outside the circle can be justified using the second corollary to the inscribed angle theorem. An alternative proof of this construction is shown below. Complete the proof. (5 points)

Pages (550 words)
Approximate price: -

Why Work with Us

Top Quality and Well-Researched Papers

We always make sure that writers follow all your instructions precisely. You can choose your academic level: high school, college/university or professional, and we will assign a writer who has a respective degree.

We have a team of professional writers with experience in academic and business writing. Many are native speakers and able to perform any task for which you need help.

Free Unlimited Revisions

If you think we missed something, send your order for a free revision. You have 10 days to submit the order for review after you have received the final document. You can do this yourself after logging into your personal account or by contacting our support.

Prompt Delivery and 100% Money-Back-Guarantee

All papers are always delivered on time. In case we need more time to master your paper, we may contact you regarding the deadline extension. In case you cannot provide us with more time, a 100% refund is guaranteed.

Original & Confidential

We use several writing tools checks to ensure that all documents you receive are free from plagiarism. Our editors carefully review all quotations in the text. We also promise maximum confidentiality in all of our services.

Our support agents are available 24 hours a day 7 days a week and committed to providing you with the best customer experience. Get in touch whenever you need any assistance.

Try it now!

## Calculate the price of your order

Total price:
\$0.00

How it works?

Fill in the order form and provide all details of your assignment.

Proceed with the payment

Choose the payment system that suits you most.

Our Services

No need to work on your paper at night. Sleep tight, we will cover your back. We offer all kinds of writing services.

## Essay Writing Service

No matter what kind of academic paper you need and how urgent you need it, you are welcome to choose your academic level and the type of your paper at an affordable price. We take care of all your paper needs and give a 24/7 customer care support system.